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Where do I start???



• Level 0 – the practitioner does not know anything about the toxicity of their 
chemical.

• Level 1 – the practitioner knows that their chemical causes an AO but does not 
know the upstream MIE or KEs.

• Level 2 – the practitioner knows that their chemical causes a KE but does not know 
upstream or downstream KEs or the MIE and AO.

• Level 3 – the practitioner knows their chemical causes an MIE but does not know 
the downstream KEs or AO.

Defining the Initial Knowledge State: AOPERA (teaser!)

Rycroft et al, in prep.



• Step 1 – link the uncharacterized chemical directly to MIEs, KEs, or AOs.
• Step 2 – identify analogs for the uncharacterized chemical.
• Step 3 – link the characterized chemical (initial chemical if characterized, 

analog if initial chemical is uncharacterized) to MIEs, KEs, or AOs.
• Step 4 – identify AOPs that contain the MIEs, KEs, or AOs that were found in 

Steps 1 and 3.

Initiating the Process



Summary of resources that support the proposed four-
step process and their applicability to each step 
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STAY TUNED!



• AOPs can help more effectively use HTS data in regulatory 
decision-making

• AOPNs might be more predictive of real-life scenarios

• AOPs are a way of organizing information and 
transferring knowledge

• Help to harness and utilize existing knowledge

AOPs



Understanding mechanistic relationships is 
necessary but not sufficient

Qualitative AOPs as Conceptual Models are a Good Start

But we need more than logical relationships and proxies

V. Forbes



Challenges for QAOPs

• Linkages need to be both mechanistic and quantitative
• Need to know if/which details can be ignored and/or 

incorporated in (complex) models
• Need to include feedbacks
• Inter-species extrapolation is still a major challenge

V. Forbes



Understanding mechanistic relationships is 
necessary but not sufficient

Regardless, SOME information is better than NO information
Just need to be aware of UNCERTAINTY



• Quantitative, predictive AOPs are necessary for screening emerging contaminants 
and potential substitutes to inform their prioritization for testing.

• A modular approach for assembly of quantitative AOPs, based on existing 
knowledge, would allow for rapid development of biological pathway models to 
screen contaminants for potential hazards and prioritize them for subsequent 
testing and modeling. 

• For each pair of KEs, a quantitative KE relationship (KER) can be derived as a 
response-response function or a conditional probability matrix describing the 
anticipated change in a KE based on the response of the prior KE.

• This transfer of response across KERs can be used to assemble a quantitative 
AOP.  

• Here we demonstrate the use of proposed approach in two cases: inhibition of 
cytochrome P450 aromatase leading to reduced fecundity in fathead minnows 
and ionic glutamate receptor mediated excitotoxicity leading to memory 
impairment in humans

• This approach to simplistic, modular AOP models has wide applicability for 
rapid development of biological pathway models. 



Translation of an AOP into a quantitative and computational 
AOP model

A qAOP captures response-response relationships 
between Key Events



A modular approach

The ideal approach would allow construction of different AOPs from an assortment of 
modules describing response relationships between KEs.  This modular approach, although 
coarser and more uncertain, would facilitate rapid prototyping and updating of both modules 
and complete AOP models, making it better-suited for screening and prioritization than the 
more detailed and resource-intensive mechanistic models referenced above. 



A quantitative relationship between key events can be used as a 
piece of a model to chain together the activity of a biological 

pathway into a simple qAOP model.
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Aromatase inhibition leading to reproductive dysfunction in fish

Excitation of NMDA receptors leading to impairment of memory 



Response-response (R-R) relationships used to establish qKERs
describing the influence that each KE has on its dependent KE 

Aromatase inhibition leading to reproductive dysfunction in fish
Foran et al 2018



Modular R-R relationships were used to transfer “activation” along 
the AOP for aromatase inhibition leading to reproductive dysfunction 

in fish, resulting in a prediction of the change in fish population.

Foran et al 2018



Response-response relationships estimating qKERs that reflect the 
influence that a KE has on its dependent KE for the pathway from 
glutamate agonism to impaired memory

Foran et al 2018



Modular R-R relationships were used to transfer “activation” along the AOP for glutamate 
agonism through activation of NMDAR resulting a loss of neurons and a prediction of 

relative memory impairment.

Foran et al 2018



AOPs Form Networks Through Shared Key Events 

Courtesy of Dan Villeneuve 

AOP:30

AOP:25

AOP:23

Key Events Shared by Multiple AOPs

Linkages Shared by Multiple AOPs



Modeling AOP networks for hazard screening 



adverse outcome pathway bayesian networks

predict probability of adverse outcomes

L. Burgoon



Adverse Outcome Pathway network for Liver Steatosis

Derived from  Angrish et al., 2016; Burgoon et al., 2016 



Causal network
Bayesian network modeling 
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Bayesian network modeling 

In vitro assay 
results can be used 
to determine activity 
of an event

“Active”
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Single chemical hazard screening: Benzo(k)fluoranthene

National Library of Medicine’s Pub-
Chem Database 

>0.5 uM B(k)F 
Inhibits HSD17b4 
activity

In vitro assay

HSD17b4

Set probability of 
being active=0

Incorporating in vitro assay data into a qAOP Bayes Net

qHTS Assay for Inhibitors
of HSD17B4

inactive



Examining hazards of chemical mixtures with Quantitative AOP 
networks case 1: water contamination &medicine

• Obesity can lead to type 2 diabetes which can be treated with rosiglitazone, an antidiabetic drug that 
is a full agonist of PPARg (Lehmann et al., 1995). 

• PFOA is a partial agonist for PPARg and a full agonist of PPARa (Vanden Heuvel et al., 2003).  
• Can interact in cases where diabetics using rosiglitazone drink water contaminated with PFOA 
• PPARg probability of being active was determined by the relative concentrations of full and partial 

agonists.
• In the presence of therapeutic levels of rosiglitazone and environmental concentrations of PFOA, the 

PPARg probability of activity is expected to be 100% since rosiglitazone will outcompete PFOA to 
occupy PPARg binding sites. 

• This is consistent with observations of increased steatosis in clinical studies of rosiglitazone in obese 
patients (Massart et al., 2017) and manifestation of steatosis in mice fed a high fat diet in 
combination with rosiglitazone (Gao et al., 2016). 



Examining hazards of chemical mixtures with 
Quantitative AOP networks case 2. Water contamination

• In the case where healthy people are exposed to both PFOA and rosiglitazone through 
contaminated water, PFOA is likely to be at much higher concentrations than rosiglitazone which 
would result in PFOA outcompeting rosiglitazone for occupancy of the PPARg receptor 

• Because of the low binding potential of PFOA for PPARg (Vanden Heuvel et al., 2003) and 
presence of the strong binding rosiglitazone, the probability of activation of PPARg can reasonably 
be set to 50%.

• Predictions are consistent with experimental studies in obese mice where reduction of PPARg
activity, via antagonism or gene knockout, decreases steatosis (Shiomi et al., 2015; Zhang et al., 
2014; Morán-Salvador et al., 2011). 



Conclusion/Recommendations

• AOPs provide a standardized approach relevant to regulatory 
needs.

• AOPs are conceptual models that inform design of qAOP models
• Define a specific question before developing a qAOP
• The complexity and type of qAOP model used is driven by 

resources and uncertainty: 
Time constraints, Data availability
Extensive response-response data
Biological fidelity
Application

• Many different types of qAOP models can be made
• Toxicokinetics+qAOP -> internal exposure at MIE+Hazard
• Exposure+Toxicokinetics+qAOP-> external exposure+Hazard
• qAOPs can be used to to answer a wide range of questions, but 

developers should be transparent and document everything (e.g. 
TRACE)



Acknowledgements

ERDC
- Lyle Burgoon
- Ed Perkins
- Taylor Rycroft
- Christy Foran

EPA
- Michelle Angrish
- Nathan Pollesch

EAWAG
- Anze Zupanic

Natalia.G.Vinas@erdc.dren.mil


