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Development of tools for rapid hazard assessment (AOPs)
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Development of tools for rapid hazard assessment (AOPs)
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Defining the Initial Knowledge State: AOPERA (teaser!)

* Level O —the practitioner does not know anything about the toxicity of their
chemical.

* Level 1 —the practitioner knows that their chemical causes an AO but does not
know the upstream MIE or KEs.

* Level 2 —the practitioner knows that their chemical causes a KE but does not know
upstream or downstream KEs or the MIE and AO.

* Level 3 —the practitioner knows their chemical causes an MIE but does not know
the downstream KEs or AO.

L =22

_@
04N+\0. _@j l
@

My Chemical —(KEM] = (KE#Z] = [KE“} = [KEM} = [KE#S} = {KE#G}—O

I know my chemical causes a Key Event, | do not

@ | do not know anything about my chemical know upstream or downstream MIE, KEs, or AOs

| know my chemical causes an AQ, | do not know I know my chemical causes an MIE, | do not know
how downstream key events or AO

Rycroft et al, in prep.



Initiating the Process

Step 1 — link the uncharacterized chemical directly to MIEs, KEs, or AOs.
Step 2 — identify analogs for the uncharacterized chemical.

Step 3 — link the characterized chemical (initial chemical if characterized,
analog if initial chemical is uncharacterized) to MIEs, KEs, or AOs.

Step 4 — identify AOPs that contain the MIEs, KEs, or AOs that were found in
Steps 1 and 3.
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Summary of resources that support the proposed four-
step process and their applicability to each step

Name Stepl | Step2 | Step3 | Step 4
VEGA QSAR X X X
OECD QSAR Toolbox X X
Toxicity Estimation Software Tool (TEST) X X X
OncoLogis X X
EPA's New Chemical Categories X X
Meule X X X
Chemistry Dashboard ("CompTox") X
Analog |dentification Methodology (AIM) X
Chemspider X
sMolecules X
PubChem X
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AOPs

AOPs are a way of organizing information and
transferring knowledge

Help to harness and utilize existing knowledge

AOPs can help more effectively use HTS data in regulatory
decision-making

AOPNSs might be more predictive of real-life scenarios



Understanding mechanistic relationships is

necessary but not sufficient

Qualitative AOPs as Conceptual Models are a Good Start

Adverse Outcome Pathway
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Fig. 1. Conceptualdiagramofkey features of an adverse outcome pathway (AOP). Each AOPbegins with amolecular initiating eventin which a chemical interacts
with a biological target (anchor 1) leading to a sequential series of higher order effects to produce an adverse outcome with direct relevance to a given risk
assessmentcontext (e.g., survival, development, reproduction, etc.; anchor2). The first three boxes are the parameters that define a toxicity pathway, asdescribed by

the National Research Council [3].

But we need more than logical relationships and proxies

V. Forbes



Challenges for QAOPs

 Linkages need to be both mechanistic and quantitative

* Need to know if /which details can be ignored and/or
incorporated in (complex) models

* Need to include feedbacks
* Inter-species extrapolation is still a major challenge

V. Forbes



Understanding mechanistic relationships is
necessary but not sufficient
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assessmentcontext (e.g., survival, development, reproduction, etc.; anchor 2). The first three boxes are the parameters that define a toxicity pathway, as described by
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Regardless, SOME information is better than NO information
Just need to be aware of UNCERTAINTY




Quantitative, predictive AOPs are necessary for screening emerging contaminants
and potential substitutes to inform their prioritization for testing.

A modular approach for assembly of quantitative AOPs, based on existing
knowledge, would allow for rapid development of biological pathway models to
screen contaminants for potential hazards and prioritize them for subsequent
testing and modeling.

For each pair of KEs, a quantitative KE relationship (KER) can be derived as a

response-response function or a conditional probability matrix describing the
anticipated change in a KE based on the response of the prior KE.

This transfer of response across KERs can be used to assemble a quantitative
AOP.

Here we demonstrate the use of proposed approach in two cases: inhibition of
cytochrome P450 aromatase leading to reduced fecundity in fathead minnows
and ionic glutamate receptor mediated excitotoxicity leading to memory
impairment in humans

This approach to simplistic, modular AOP models has wide applicability for
rapid development of biological pathway models.



Translation of an AOP into a quantitative and computational
AOP model
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A qAOP captures response-response relationships
between Key Events



A modular approach

@ = | KE#1 = KE #2 = KE #3 = KE #4 = KE #5 = KE #6 | ==

The ideal approach would allow construction of different AOPs from an assortment of
modules describing response relationships between KEs. This modular approach, although
coarser and more uncertain, would facilitate rapid prototyping and updating of both modules
and complete AOP models, making it better-suited for screening and prioritization than the
more detailed and resource-intensive mechanistic models referenced above.



A quantitative relationship between key events can be used as a
piece of a model to chain together the activity of a biological
pathway into a simple gqAOP model.

R-R relationship
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Aromatase inhibition leading to reproductive dysfunction in fish

A
KER 1 KER 2 KER 3 KER 4 KER 5 KER 6 KER7
1 | A | | _ |
| | | | | | I
[ MIE ) == ‘ KE #1 ’ — ‘ KE #2 ‘ — ‘ KE #3 ’ — ‘ KE #4 ’ — ‘ KE #5 ’ — ‘ KE #6 ’—»
Aromatase Reduction in Reduction in Reduction in Reduction in Impaired Reduction in Decrease in
Inhibition E2 Synthesis Plasma E2 VTG Plasma VTG Oocyte Spawning & Population
Concentration Transcription & Concentration Development Fecundity Trajectory
Translocation
Excitation of NMDA receptors leading to impairment of memory
Neuro-
inflammation
B KER 1 KER 2 KER 3 KER 4 KER 5 ‘ KE #5 ’ KER7 KER 8
. x | R // ' A 1
| | | | | | |
<] o
O OME ) e ’ KE #1 ‘ — ’ KE #2 ‘ - ‘ KE #3 ’ — ‘ KE #4 ’ — ‘ <E He ’ — ‘ KE #7 ’ —
. . / . / J J | .' ." | . J
Agonists Over-activation Intracellular Mitochondrial Neuronalcell ! Neuro- Decreased Impairment
binding to of NMDAR Ca++ overload dysfunction death KER 6 . neuronal of learning
. . degeneration
ionotropic network and memory
glutamate function

receptor



Response-response (R-R) relationships used to establish qKERs
describing the influence that each KE has on its dependent KE
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Aromatase inhibition leading to reproductive dysfunction in fish
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Modular R-R relationships were used to transfer “activation” along
the AOP for aromatase inhibition leading to reproductive dysfunction
in fish, resulting in a prediction of the change in fish population.
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Response-response relationships estimating qKERs that reflect the
influence that a KE has on its dependent KE for the pathway from
glutamate agonism to impaired memory
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Modular R-R relationships were used to transfer “activation” along the AOP for glutamate
agonism through activation of NMDAR resulting a loss of neurons and a prediction of
relative memory impairment.
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AOPs Form Networks Through Shared Key Events
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Modeling AOP networks for hazard screening
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adverse outcome pathway bayesian networks

predict probability of adverse outcomes
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Adverse Outcome Pathway network for Liver Steatosis

LRHl

NFEE;Nrfz 1 |
LXR PPAR /
PI3K gamma
PPARaIph b aPKC ad
MTORC2 / %
| SREBP-17 .
insulin AKT%
Y_ ) receptor _lipogenesis

HSD17b4 mTORC1

\ fatty
mf
Fam,r Acud I——O

Beta Steatoms fatty acid
oxidation efflux

Derived from Angrish et al., 2016; Burgoon et al., 2016



Bayesian nhetwork modeling

Causal network
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Bayesian nhetwork modeling

In vitro assay
results can be used

Causal network
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Predicting effect of assay measurements of events in an AOP network
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Single chemical hazard screening: Benzo(k)fluoranthene

Incorporating in vitro assay data into a qQAOP Bayes Net
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Examining hazards of chemical mixtures with Quantitative AOP

networks case 1: water contamination &medicine
Obesity can lead to type 2 diabetes which can be treated with rosiglitazone, an antidiabetic drug that

is a full agonist of PPARy (Lehmann et al., 1995).

PFOA is a partial agonist for PPARy and a full agonist of PPARa (Vanden Heuvel et al., 2003).
Can interact in cases where diabetics using rosiglitazone drink water contaminated with PFOA
PPARYy probability of being active was determined by the relative concentrations of full and partial

agonists.

In the presence of therapeutic levels of rosiglitazone and environmental concentrations of PFOA, the
PPARYy probability of activity is expected to be 100% since rosiglitazone will outcompete PFOA to

occupy PPARYy binding sites.

This is consistent with observations of increased steatosis in clinical studies of rosiglitazone in obese
patients (Massart et al., 2017) and manifestation of steatosis in mice fed a high fat diet in

combination with rosiglitazone (Gao et al., 2016).

B. Low PFOA + Rosiglitazone

SHP LRH1
= FXR
’—v-
NFEZ!Ner i
PPARaIph
mTORC2
insulin
receptor
HSDl7b4

Beta_ Steatosis
oxidation

fatty acid
efflux

Probability o
~being ac v

- a
0% 50 100%

-=» Agonism
—> Activation

—f Inhibition

O Adverse Outcome




Examining hazards of chemical mixtures with
Quantitative AOP networks case 2. Water contamination

In the case where healthy people are exposed to both PFOA and rosiglitazone through

contaminated water, PFOA is likely to be at much higher concentrations than rosiglitazone which

would result in PFOA outcompeting rosiglitazone for occupancy of the PPARYy receptor

Because of the low binding potential of PFOA for PPARy (Vanden Heuvel et al., 2003) and
presence of the strong binding rosiglitazone, the probability of activation of PPARy can reasonably

be set to 50%.

Predictions are consistent with experimental studies in obese mice where reduction of PPARy
activity, via antagonism or gene knockout, decreases steatosis (Shiomi et al., 2015; Zhang et al.,

2014; Moran-Salvador et al., 2011).

C. High PFOA + Rosiglitazone
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Conclusion/Recommendations

AOPs provide a standardized approach relevant to regulatory
needs.

AOQOPs are conceptual models that inform design of gQAOP models
Define a specific question before developing a qAOP

The complexity and type of gQAOP model used is driven by
resources and uncertainty:

Time constraints, Data availability

Extensive response-response data

Biological fidelity

Application
Many different types of QAOP models can be made
Toxicokinetics+qAOP -> internal exposure at MIE+Hazard
Exposure+Toxicokinetics+qAOP-> external exposure+Hazard

qAOPs can be used to to answer a wide range of questions, but

developers should be transparent and document everything (e.g.
TRACE)
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