Diet, Intestinal Microbiota, and Cardio-Renal Disease Risk

W. H. Wilson Tang, MD

Professor of Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Research University

Director, Center for Clinical Genomics
Learning Objectives

• To describe the contribution of intestinal microbiota and its interactions with dietary intake in the development and progression of cardio-renal diseases.

• To discuss the evolving mechanistic insights of dietary induced, microbiota-mediated metabolic pathways and their clinical implications.

• To highlight the promise of novel strategies that target intestinal microbiome to modulate cardio-renal disease risk.
Introducing the Human Gut Microbiota …

Microbial cells may out-number human cells 10 to 1

Total mass >1.2 kg, (>80% in gut)

70% of our immune cells reside in GI tract

The gut produces 3/4 of the body’s neurotransmitters

Cerf-Bensussan et al, Nat Rev Immunol 2010
Intestinal Microbiome in Health & Diseases

- Heart attack
- Heart failure
- Atherosclerosis
- Arrhythmia

- Psoriasis
- Atopy

- Autism
- Stroke
- Neurocognitive functional decline

- Asthma
- Atopy

- Thrombosis
- Platelet hyperresponsiveness
- HTN

- Chronic kidney disease
- Uremic toxins

- Diabetes

- Rheumatoid arthritis

- Marrow/Lymphoid
 - Immunity
 - Inflammation

- Insulin resistance
- Adiposity
- Obesity

- IBD

- Lungs
- Pancreas
- GI tract
Intestinal Microbiota, Metabolites & Immunity

“Food Metabolome”

- All metabolites that derive from digestion and metabolism from food components.

- The biggest environment exposure is represented by what we ingest as food and filtered by gut microbiota.

Colonic Fermentation from Dietary Intake

Scott et al, Pharmacol Res 2012;
David et al, Nature 2014
Short-Chain Fatty Acid (SCFA): Renal Sensory Nerve Activation via GPR41-Olfr78

Gut Microbiota-dependent Choline/Carnitine Metabolism Leads to TMA/TMAO Production

Selection Criteria (2000+ analytes):
Case-control 2-sided t-test $P<0.05$
Dose-response (analyte vs phenotype)
 Cochran-Armitage $P<0.05$
Minimal signal-to-noise ratio of 5:1
LC/MS in positive MS1 mode

Gut Microbiota Play Obligatory Role in TMAO Generation from Dietary PC in Mice

Involvement of Gut Microbiota

Involvement of Foam Cells

Transmission of Atherosclerotic Susceptibility: “Koch’s Postulate”

Cecal Transplantation

Microbial Transplantation

Romano et al, *MBio* 2015
Gut Flora-dependent Phosphatidylcholine Metabolism in Humans by d9-PC

Human: Impact of Antibiotics

Two hard-boiled eggs
Each 250 mg choline

Isotope-labelled PC
d9(trimethyl)-dipalmitoyl-PC or d9-DPPC 250 mg

Increased TMAO Levels Portend Higher Risk of MACE and Atherosclerotic Burden

Human: Major Adverse Cardiac Events

Human: SYNTAX Score

Senthong et al., *JACC* 2016
Gut Microbiota-Dependent TMAO Production from L-Carnitine in Humans

Humans: Impact of antibiotics

Koeth et al, Nat Med 2013
TMAO Enhances Platelet Hyperreactivity and Thrombotic Risk

Mice: In Vivo Thrombosis

Humans: Impact of oral choline & aspirin

Zhu et al, Cell 2015; Zhu et al, Circulation 2017
Prognostic Value of Plasma TMAO Levels in Heart Failure

Chronic Heart Failure

Tang et al, *J Am Coll Cardiol* 2014

Acute Heart Failure

Increased Susceptibility of Adverse Remodeling with Dietary TMAO/Choline

C57BL/6J mice

Withdrawing of dietary TMAO (0.12%) at 6 weeks

Organ et al, *Circ Heart Fail* 2016

Organ et al, *AHA* 2016 (abstract)
Elevated TMAO Levels in CKD Patients is Associated with Adverse Outcomes

Stubbs et al, *JASN* 2015
Dietary Choline/TMAO Exposure Contributes to Progressive Renal Fibrosis

** p<0.01

Summary: TMAO Metaorganismal Pathway

Zhu et al, Cell 2016
Strategies to Target Intestinal Microbiome

Adherence to Mediterranean Diet Lowers Urinary TMAO Levels

De Filippis et al, *Gut* 2015
Probiotics and TMAO with High-Fat Diet

Boutagy et al, *Obesity* 2016
TMA-Lyase Inhibitor: 3,3-dimethyl-1-butanol (DMB) as prototype

Brown & Hazen, J Biol Chem 2017
Wang et al, Cell 2015
Diet, Gut Microbiota, and Cardio-Renal Risk

Tang, Kitai & Hazen, Circ Res 2017
Acknowledgements

Cleveland Clinic
- Stanley Hazen, MD PhD
- Zeneng Wang, PhD
- Robert Koeth, MD PhD
- Weifei Zhu, PhD
- Xinmin S. Li, PhD
- Jill Gregory, PhD
- David Kennedy, PhD
- Lin Li, PhD
- Vichai Senthong, MD
- Takeshi Kitai, MD PhD
- Jennifer Kirsop

Cleveland State University
- Yuping Wu, PhD
- Richard Fan, PhD

USC/UCLA
- Hooman Allayee, PhD
- Jaana Hartiala, PhD
- Aldon J. Lusis, PhD
- Brian Bennett, PhD

Louisiana State University
- David Lefer, PhD
- Chelsea Organ (PhD student)

Funding Support
- NIH R01HL105993
- NIH P20HL113452
- NIH UL1TR000439
- NIH R01HL103931
- NIH R01DK106000
- NIH R01HL126827
Cleveland Clinic

Every life deserves world class care.